Data Exploration & Machine Learning, Hands-on


"

Recommended free walkthrough, check it out and boost your career:


Boost your data science career

"







Modeling Ensembles with R and {caret}

Practical walkthroughs on machine learning, data exploration and finding insight.

Resources


Packages Used in this Walkthrough



There are many reasons to ensemble models but it usually comes down to capturing a deeper understanding of high dimensionality data. The more complex a data set, the more it benefits from additional models, just like additional eyes, to capture more nuances scattered around high dimensionality data.

Let’s code!

This walkthrough leverages the caret package for ease of coding but the concept applies to any model in any statistical programming language. Caret allows you to easily switch models in a script without having to change much of the code. You can easily write a loop and have it run through the almost 170 models that the package currently supports (Max Kuhn keeps adding new ones) by only changing one variable.

To get a complete list of the models supported by caret use the getModelInfo function:

library(caret)
names(getModelInfo())
##   [1] "ada"                 "ANFIS"               "avNNet"             
##   [4] "bag"                 "bagEarth"            "bagFDA"             
##   [7] "bayesglm"            "bdk"                 "blackboost"         
##  [10] "Boruta"              "brnn"                "bstLs"              
##  [13] "bstSm"               "bstTree"             "C5.0"               
##  [16] "C5.0Cost"            "C5.0Rules"           "C5.0Tree"           
##  [19] "cforest"             "CSimca"              "ctree"              
##  [22] "ctree2"              "cubist"              "DENFIS"             
##  [25] "dnn"                 "earth"               "elm"                
##  [28] "enet"                "evtree"              "extraTrees"         
##  [31] "fda"                 "FH.GBML"             "FIR.DM"             
##  [34] "foba"                "FRBCS.CHI"           "FRBCS.W"            
##  [37] "FS.HGD"              "gam"                 "gamboost"           
##  [40] "gamLoess"            "gamSpline"           "gaussprLinear"      
##  [43] "gaussprPoly"         "gaussprRadial"       "gbm"                
##  [46] "gcvEarth"            "GFS.FR.MOGAL"        "GFS.GCCL"           
##  [49] "GFS.LT.RS"           "GFS.Thrift"          "glm"                
##  [52] "glmboost"            "glmnet"              "glmStepAIC"         
##  [55] "gpls"                "hda"                 "hdda"               
##  [58] "HYFIS"               "icr"                 "J48"                
##  [61] "JRip"                "kernelpls"           "kknn"               
##  [64] "knn"                 "krlsPoly"            "krlsRadial"         
##  [67] "lars"                "lars2"               "lasso"              
##  [70] "lda"                 "lda2"                "leapBackward"       
##  [73] "leapForward"         "leapSeq"             "Linda"              
##  [76] "lm"                  "lmStepAIC"           "LMT"                
##  [79] "logicBag"            "LogitBoost"          "logreg"             
##  [82] "lssvmLinear"         "lssvmPoly"           "lssvmRadial"        
##  [85] "lvq"                 "M5"                  "M5Rules"            
##  [88] "mda"                 "Mlda"                "mlp"                
##  [91] "mlpWeightDecay"      "multinom"            "nb"                 
##  [94] "neuralnet"           "nnet"                "nodeHarvest"        
##  [97] "oblique.tree"        "OneR"                "ORFlog"             
## [100] "ORFpls"              "ORFridge"            "ORFsvm"             
## [103] "pam"                 "parRF"               "PART"               
## [106] "partDSA"             "pcaNNet"             "pcr"                
## [109] "pda"                 "pda2"                "penalized"          
## [112] "PenalizedLDA"        "plr"                 "pls"                
## [115] "plsRglm"             "ppr"                 "protoclass"         
## [118] "qda"                 "QdaCov"              "qrf"                
## [121] "qrnn"                "rbf"                 "rbfDDA"             
## [124] "rda"                 "relaxo"              "rf"                 
## [127] "rFerns"              "RFlda"               "ridge"              
## [130] "rknn"                "rknnBel"             "rlm"                
## [133] "rocc"                "rpart"               "rpart2"             
## [136] "rpartCost"           "RRF"                 "RRFglobal"          
## [139] "rrlda"               "RSimca"              "rvmLinear"          
## [142] "rvmPoly"             "rvmRadial"           "SBC"                
## [145] "sda"                 "sddaLDA"             "sddaQDA"            
## [148] "simpls"              "SLAVE"               "slda"               
## [151] "smda"                "sparseLDA"           "spls"               
## [154] "stepLDA"             "stepQDA"             "superpc"            
## [157] "svmBoundrangeString" "svmExpoString"       "svmLinear"          
## [160] "svmPoly"             "svmRadial"           "svmRadialCost"      
## [163] "svmRadialWeights"    "svmSpectrumString"   "treebag"            
## [166] "vbmpRadial"          "widekernelpls"       "WM"                 
## [169] "xyf"



As you can see, there are plenty of models available to satisfy most needs. Some support either dual use, while others are either classification or regression only. You can test for the type a model supports by using the same getModelInfo function:

getModelInfo()$glm$type
#  "Regression"     "Classification"

In the above snippet, glm supports both regression and classification.

We download the vehicles data set from Hadley Wickham hosted on Github. To keep this simple, we attempt to predict whether a vehicle has 6 cylinders using only the first 24 columns of the data set:

library(RCurl)
urlfile <-'https://raw.githubusercontent.com/hadley/fueleconomy/master/data-raw/vehicles.csv'
x <- getURL(urlfile, ssl.verifypeer = FALSE)
vehicles <- read.csv(textConnection(x))

# alternative way of getting the data if the above snippet doesn't work:
# urlData <- getURL('https://raw.githubusercontent.com/hadley/fueleconomy/master/data-raw/vehicles.csv')
# vehicles <- read.csv(text = urlData)



We clean the outcome variable cyclinders by assigning it 1 for 6 cyclinders and 0 for everything else:

vehicles <- vehicles[names(vehicles)[1:24]]
vehicles <- data.frame(lapply(vehicles, as.character), stringsAsFactors=FALSE)
vehicles <- data.frame(lapply(vehicles, as.numeric))
vehicles[is.na(vehicles)] <- 0
vehicles$cylinders <- ifelse(vehicles$cylinders == 6, 1,0)



We call prop.table to understand the proportions of our outcome variable:

prop.table(table(vehicles$cylinders))
##      0      1 
## 0.6506 0.3494

This tells us that 35% of the data represents a vehicle with 6 cylinders. So our data isn’t perfectly balanced but it certainly isn’t skewed or considered a rare event.

Here is the one complicated part, instead of splitting the data into 2 parts of train and test, we split the data into 3 parts: ensembleData, blenderData, and testingData:

set.seed(1234)
vehicles <- vehicles[sample(nrow(vehicles)),]
split <- floor(nrow(vehicles)/3)
ensembleData <- vehicles[0:split,]
blenderData <- vehicles[(split+1):(split*2),]
testingData <- vehicles[(split*2+1):nrow(vehicles),]



We assign the outcome name to labelName and the predictor variables to predictors:

labelName <- 'cylinders'
predictors <- names(ensembleData)[names(ensembleData) != labelName]



We create a caret trainControl object to control the number of cross-validations performed (the more the better but for breivity we only require 3):

myControl <- trainControl(method='cv', number=3, returnResamp='none')



Benchmark Model

We run the data on a gbm model without any enembling to use as a comparative benchmark:

test_model <- train(blenderData[,predictors], blenderData[,labelName], method='gbm', trControl=myControl)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        0.2147             nan     0.1000    0.0128
##      2        0.2044             nan     0.1000    0.0104
##      3        0.1962             nan     0.1000    0.0084
...

You’ll see a series of the lines (as shown above) as it trains thegbm model.

We then use the model to predict 6-cylinder vehicles using the testingData data set and pROC’s auc function to get the Area Under the Curve (AUC):

preds <- predict(object=test_model, testingData[,predictors])
library(pROC)
auc <- roc(testingData[,labelName], preds)
print(auc$auc) 
## Area under the curve: 0.99

It gives a fairly strong AUC score of 0.99 (remember that 0.5 is random and 1 is perfect). Hard to believe we can improve this score using an ensemble of models…

Ensembles

But we’re going to try. We now use 3 models - gbm, rpart, and treebag as part of our ensembles of models and train them with the ensembleData data set:

model_gbm <- train(ensembleData[,predictors], ensembleData[,labelName], method='gbm', trControl=myControl)

model_rpart <- train(ensembleData[,predictors], ensembleData[,labelName], method='rpart', trControl=myControl)

model_treebag <- train(ensembleData[,predictors], ensembleData[,labelName], method='treebag', trControl=myControl)



After our 3 models are trained, we use them to predict 6 cylinder vehicles on the other two data sets: blenderData and testingData - yes, both!! We need to do this to harvest the predictions from both data sets as we’re going to add those predictions as new features to the same data sets. So, as we have 3 models, we’re going to add three new columns to both blenderData and testingData:

blenderData$gbm_PROB <- predict(object=model_gbm, blenderData[,predictors])
blenderData$rf_PROB <- predict(object=model_rpart, blenderData[,predictors])
blenderData$treebag_PROB <- predict(object=model_treebag, blenderData[,predictors])

testingData$gbm_PROB <- predict(object=model_gbm, testingData[,predictors])
testingData$rf_PROB <- predict(object=model_rpart, testingData[,predictors])
testingData$treebag_PROB <- predict(object=model_treebag, testingData[,predictors])

Please note how easy it is to add those values back to the original data set (follow where we assign the resulting predictions above).

Now we train a final blending model on the old data and the new predictions (we use gbm but that is completely arbitrary):

predictors <- names(blenderData)[names(blenderData) != labelName]
final_blender_model <- train(blenderData[,predictors], blenderData[,labelName], method='gbm', trControl=myControl)



And we call predict and roc/auc functions to see how our blended ensemble model fared:

preds <- predict(object=final_blender_model, testingData[,predictors])
auc <- roc(testingData[,labelName], preds)
print(auc$auc)
## Area under the curve: 0.993


There you have it, an AUC bump of 0.003. This may not seem like much (and there are many ways of improving that score) but it should easily give you that extra edge on your next data science competition!!




Full source code (also on GitHub):

library(caret)
names(getModelInfo())

# Load data from Hadley Wickham on Github - Vehicle data set and predict 6 cylinder vehicles
library(RCurl)
#urlData <- getURL('https://raw.githubusercontent.com/hadley/fueleconomy/master/data-raw/vehicles.csv')
#vehicles <- read.csv(text = urlData)

# alternative way of getting the data
urlfile <-'https://raw.githubusercontent.com/hadley/fueleconomy/master/data-raw/vehicles.csv'
x <- getURL(urlfile, ssl.verifypeer = FALSE)
vehicles <- read.csv(textConnection(x))

# clean up the data and only use the first 24 columns
vehicles <- vehicles[names(vehicles)[1:24]]
vehicles <- data.frame(lapply(vehicles, as.character), stringsAsFactors=FALSE)
vehicles <- data.frame(lapply(vehicles, as.numeric))
vehicles[is.na(vehicles)] <- 0
vehicles$cylinders <- ifelse(vehicles$cylinders == 6, 1,0)

prop.table(table(vehicles$cylinders))

# shuffle and split the data into three parts
set.seed(1234)
vehicles <- vehicles[sample(nrow(vehicles)),]
split <- floor(nrow(vehicles)/3)
ensembleData <- vehicles[0:split,]
blenderData <- vehicles[(split+1):(split*2),]
testingData <- vehicles[(split*2+1):nrow(vehicles),]

# set label name and predictors
labelName <- 'cylinders'
predictors <- names(ensembleData)[names(ensembleData) != labelName]

library(caret)
# create a caret control object to control the number of cross-validations performed
myControl <- trainControl(method='cv', number=3, returnResamp='none')

# quick benchmark model 
test_model <- train(blenderData[,predictors], blenderData[,labelName], method='gbm', trControl=myControl)
preds <- predict(object=test_model, testingData[,predictors])

library(pROC)
auc <- roc(testingData[,labelName], preds)
print(auc$auc) # Area under the curve: 0.9896

# train all the ensemble models with ensembleData
model_gbm <- train(ensembleData[,predictors], ensembleData[,labelName], method='gbm', trControl=myControl)
model_rpart <- train(ensembleData[,predictors], ensembleData[,labelName], method='rpart', trControl=myControl)
model_treebag <- train(ensembleData[,predictors], ensembleData[,labelName], method='treebag', trControl=myControl)

# get predictions for each ensemble model for two last data sets
# and add them back to themselves
blenderData$gbm_PROB <- predict(object=model_gbm, blenderData[,predictors])
blenderData$rf_PROB <- predict(object=model_rpart, blenderData[,predictors])
blenderData$treebag_PROB <- predict(object=model_treebag, blenderData[,predictors])
testingData$gbm_PROB <- predict(object=model_gbm, testingData[,predictors])
testingData$rf_PROB <- predict(object=model_rpart, testingData[,predictors])
testingData$treebag_PROB <- predict(object=model_treebag, testingData[,predictors])

# see how each individual model performed on its own
auc <- roc(testingData[,labelName], testingData$gbm_PROB )
print(auc$auc) # Area under the curve: 0.9893

auc <- roc(testingData[,labelName], testingData$rf_PROB )
print(auc$auc) # Area under the curve: 0.958

auc <- roc(testingData[,labelName], testingData$treebag_PROB )
print(auc$auc) # Area under the curve: 0.9734

# run a final model to blend all the probabilities together
predictors <- names(blenderData)[names(blenderData) != labelName]
final_blender_model <- train(blenderData[,predictors], blenderData[,labelName], method='gbm', trControl=myControl)

# See final prediction and AUC of blended ensemble
preds <- predict(object=final_blender_model, testingData[,predictors])
auc <- roc(testingData[,labelName], preds)
print(auc$auc)  # Area under the curve: 0.9922

Manuel Amunategui - Follow me on Twitter: @amunategui