### Data Exploration & Machine Learning, Hands-on

Practical Walkthroughs on Machine Learning, Data Exploration and Insight Finding

# Reducing High Dimensional Data with Principle Component Analysis (PCA) and prcomp

Practical walkthroughs on machine learning, data exploration and finding insight.

Resources

Packages Used in this Walkthrough

• {stats} - prcomp and PCA
• {xgboost} - fast modeling algorithm
• {Metrics} - measuring error & AUC
• {caret} - reducing zero/near-zero variance

I can’t remember the last time I worked on a data set with less than 500 features. This isn’t a big deal with today’s computing power, but it can become unwieldy when you need to use certain forest-based models, heavy cross-validation, grid tuning, or any ensemble work. Note: the term variables, features, predictors are used throughout and mean the same thing.

The 3 common ways of dealing with high-dimensionality data (i.e. having too many variables) are:

1. get more computing muscle (like RStudio on an Amazon Web Services EC2 instance),
2. prune your data set using feature selection (measure variables effectiveness and keeps only the best - built-in feature selection - see fscaret),
3. and finally, the subject of this walkthrough, use feature reduction (also refereed as feature extraction) to create new variables made of bits and pieces of the original variables.

According to wikipedia:

"Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components."

You’ll find reams of explanations on the web, but, in a nutshell, PCA looks for the set of related variables in your data that explain most of the variance and creates a new feature out of it. This becomes your first component. It will then keep doing so on the next set of variables unrelated to the first, and that becomes your next component, and so on and so forth. This is done in an unsupervised manner so it doesn’t care what your response variable/outcome is (but you should exclude it from your data before feeding it into PCA). As a side note, this is the basis of a lot of compression software – it is that good.

Let’s code!

To get started, we need a data set with a lot of columns. We’re going to borrow a data set from NIPS (Neural Information Processing Systems) from a completed, 2013 competition. The meaning of the data is immaterial for our needs. Let’s download our data from the UC Irvine Machine Learning Repository (warning: this is a large file):

``````library(RCurl) # download https data
urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.data'
x <- getURL(urlfile, ssl.verifypeer = FALSE)
gisetteRaw <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFactors = FALSE)

urlfile <- "https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.labels"
x <- getURL(urlfile, ssl.verifypeer = FALSE)
g_labels <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFactors = FALSE)

print(dim(gisetteRaw))
``````
``````## [1] 6000 5001
``````

The gisetteRaw data frame has 5001 columns and that’s the kind of size we’re looking for. Before we can start the PCA transformation process, we need to remove the extreme near-zero variance as it won’t help us much and risks crashing the script. We load the caret package and call `nearZeroVar` function with `saveMetrics` parameter set to true. This will return a data frame with the degree of zero variance for each feature:

``````library(caret)
nzv <- nearZeroVar(gisetteRaw, saveMetrics = TRUE)
print(paste('Range:',range(nzv\$percentUnique)))
``````
``````## [1] "Range: 0"   "Range: 8.6"
``````
``````print(head(nzv))
``````
``````##    freqRatio percentUnique zeroVar  nzv
## V1     48.25        5.2167   FALSE TRUE
## V2   1180.80        1.3667   FALSE TRUE
## V3     41.32        6.1500   FALSE TRUE
## V4   5991.00        0.1667   FALSE TRUE
## V5    980.00        1.5333   FALSE TRUE
## V6    140.00        3.5167   FALSE TRUE
``````

We remove features with less than 0.1% variance:

``````print(paste('Column count before cutoff:',ncol(gisetteRaw)))
``````
``````## [1] "Column count before cutoff: 5001"
``````
``````dim(nzv[nzv\$percentUnique > 0.1,])
``````
``````## [1] 4639    4
``````
``````gisette_nzv <- gisetteRaw[c(rownames(nzv[nzv\$percentUnique > 0.1,])) ]
print(paste('Column count after cutoff:',ncol(gisette_nzv)))
``````
``````## [1] "Column count before cutoff: 4639"
``````

The data is cleaned up and ready to go. Let’s see how well it performs without any PCA transformation. We bind the labels (response/outcome variables) to the set:

``````dfEvaluate <- cbind(as.data.frame(sapply(gisette_nzv, as.numeric)),
cluster=g_labels\$V1)
``````

We’re going to feed the data into the following cross-validation function using the `zxgboost` model. This is a fast model and does great with large data sets. The repeated cross-validation will run the data 5 times, each time assigning a new chunk of data as training and testing. This not only allows us to use all the data as both train and test sets, but also stabilizes our AUC (Area Under the Curve) score.

``````
EvaluateAUC <- function(dfEvaluate) {
require(xgboost)
require(Metrics)
CVs <- 5
cvDivider <- floor(nrow(dfEvaluate) / (CVs+1))
indexCount <- 1
outcomeName <- c('cluster')
predictors <- names(dfEvaluate)[!names(dfEvaluate) %in% outcomeName]
lsErr <- c()
lsAUC <- c()
for (cv in seq(1:CVs)) {
print(paste('cv',cv))
dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + cvDivider))
dataTest <- dfEvaluate[dataTestIndex,]
dataTrain <- dfEvaluate[-dataTestIndex,]

bst <- xgboost(data = as.matrix(dataTrain[,predictors]),
label = dataTrain[,outcomeName],
max.depth=6, eta = 1, verbose=0,
objective = "reg:linear")

predictions <- predict(bst, as.matrix(dataTest[,predictors]), outputmargin=TRUE)
err <- rmse(dataTest[,outcomeName], predictions)
auc <- auc(dataTest[,outcomeName],predictions)

lsErr <- c(lsErr, err)
lsAUC <- c(lsAUC, auc)
gc()
}
print(paste('Mean Error:',mean(lsErr)))
print(paste('Mean AUC:',mean(lsAUC)))
}
``````
``````EvaluateAUC(dfEvaluate)

## [1] "cv 1"
## [1] "cv 2"
## [1] "cv 3"
## [1] "cv 4"
## [1] "cv 5"

## [1] 0.9659
``````

This yields a great AUC score of 0.9659 (remember, AUC of 0.5 is random, and 1.0 is perfect). But we don’t really care how well the model did; we just want to use that AUC score as a basis of comparison against the transformed PCA variables.

So, let’s use the same data and run it through `prcomp`. This will transform all the related variables that account for most of the variation - meaning that the first component variable will be the most powerful variable (Warning: this can be a very slow to process depending on your machine - it took 20 minutes on my MacBook - so do it once and store the resulting data set for later use):

``````pmatrix <- scale(gisette_nzv)
princ <- prcomp(pmatrix)
``````

Let’s start by running the same cross-validation code with just the first PCA component (remember, this holds most of the variation of our data set). We need to use our princ result set and call the `predict` function to get our data.frame:

``````nComp <- 1
dfComponents <- predict(princ, newdata=pmatrix)[,1:nComp]

dfEvaluate <- cbind(as.data.frame(dfComponents),
cluster=g_labels\$V1)

EvaluateAUC(dfEvaluate)

## [1] "cv 1"
## [1] "cv 2"
## [1] "cv 3"
## [1] "cv 4"
## [1] "cv 5"

## [1] 0.719
``````

The resulting AUC of 0.719 isn’t that good compared to the orginal, non-transformed data set. But we have to remember that this is one variable against almost 5000!! Let’s try this again with 2 components:

``````nComp <- 2
...
print(mean(lsAUC))
``````
``````## [1] 0.7228
``````

Two components give an AUC score of 0.7228, still some ways to go. Let’s jump to 5 components:

``````nComp <- 5
...
print(mean(lsAUC))
``````
``````## [1] 0.9279
``````

Now we’re talking, 0.9279!!! Let’s try 10 components:

``````nComp <- 10
...
print(mean(lsAUC))
``````
``````## [1] 0.9651
``````

Yowza!! 0.9651!! Let’s try 20 components:

``````nComp <- 20
...
print(mean(lsAUC))
``````
``````## [1] 0.9641
``````

Hmmm, going back down… Let’s stop here and stick with the first 10 PCA components. So, 10 PCA columns versus 4639 columns - not bad, right? Keep in mind that you should be able to get closer to the AUC of the original data set by adding more PCA components as `prcomp` accounts for all variations in the data. On the other hand, by following the steps in this walkthrough, you can get a great AUC score with very little effort and an absurdly smaller resulting data set.

A common critique about PCA is that it is hard to analyze once transformed as many of variables get clumped together under a nondescript name. One way around this is top plot your PCA data ontop of you discrete variables, see FactoMineR for more information.

Though out of scope for this hands-on post, there are many ways of finding the perfect amount of components to use - check out Eigen angles and vectors and check out also clusterboot.

``````
require(ROCR)
require(caret)
require(ggplot2)

EvaluateAUC <- function(dfEvaluate) {
require(xgboost)
require(Metrics)
CVs <- 5
cvDivider <- floor(nrow(dfEvaluate) / (CVs+1))
indexCount <- 1
outcomeName <- c('cluster')
predictors <- names(dfEvaluate)[!names(dfEvaluate) %in% outcomeName]
lsErr <- c()
lsAUC <- c()
for (cv in seq(1:CVs)) {
print(paste('cv',cv))
dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + cvDivider))
dataTest <- dfEvaluate[dataTestIndex,]
dataTrain <- dfEvaluate[-dataTestIndex,]

bst <- xgboost(data = as.matrix(dataTrain[,predictors]),
label = dataTrain[,outcomeName],
max.depth=6, eta = 1, verbose=0,
objective = "reg:linear")

predictions <- predict(bst, as.matrix(dataTest[,predictors]), outputmargin=TRUE)
err <- rmse(dataTest[,outcomeName], predictions)
auc <- auc(dataTest[,outcomeName],predictions)

lsErr <- c(lsErr, err)
lsAUC <- c(lsAUC, auc)
gc()
}
print(paste('Mean Error:',mean(lsErr)))
print(paste('Mean AUC:',mean(lsAUC)))
}

##########################################################################################
##########################################################################################

# https://archive.ics.uci.edu/ml/datasets/Gisette
# http://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html

# word of warning, this is 20mb - slow
urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.data'
x <- getURL(urlfile, ssl.verifypeer = FALSE)
gisetteRaw <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFactors = FALSE)

urlfile <- "https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.labels"
x <- getURL(urlfile, ssl.verifypeer = FALSE)
g_labels <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFactors = FALSE)

##########################################################################################
## Remove zero and close to zero variance
##########################################################################################

nzv <- nearZeroVar(gisetteRaw, saveMetrics = TRUE)
range(nzv\$percentUnique)

# how many have no variation at all
print(length(nzv[nzv\$zeroVar==T,]))

print(paste('Column count before cutoff:',ncol(gisetteRaw)))

# how many have less than 0.1 percent variance
dim(nzv[nzv\$percentUnique > 0.1,])

# remove zero & near-zero variance from original data set
gisette_nzv <- gisetteRaw[c(rownames(nzv[nzv\$percentUnique > 0.1,])) ]
print(paste('Column count after cutoff:',ncol(gisette_nzv)))

##########################################################################################
# Run model on original data set
##########################################################################################

dfEvaluate <- cbind(as.data.frame(sapply(gisette_nzv, as.numeric)),
cluster=g_labels\$V1)

EvaluateAUC(dfEvaluate)

##########################################################################################
# Run prcomp on the data set
##########################################################################################

pmatrix <- scale(gisette_nzv)
princ <- prcomp(pmatrix)

# plot the first two components
ggplot(dfEvaluate, aes(x=PC1, y=PC2, colour=as.factor(g_labels\$V1+1))) +
geom_point(aes(shape=as.factor(g_labels\$V1))) + scale_colour_hue()

# full - 0.965910574495451
nComp <- 5
nComp <- 10
nComp <- 90
nComp <- 20
nComp <- 50
nComp <- 100

# change nComp to try different numbers of component variables (10 works great)
nComp <- 10  # 0.9650
dfComponents <- predict(princ, newdata=pmatrix)[,1:nComp]
dfEvaluate <- cbind(as.data.frame(dfComponents),
cluster=g_labels\$V1)

EvaluateAUC(dfEvaluate)

``````
``````
require(ROCR)
require(caret)
require(ggplot2)

Evaluate_GBM_AUC <- function(dfEvaluate, CV=5, trees=3, depth=2, shrink=0.1) {
require(caret)
require(Metrics)
CVs <- CV
cvDivider <- floor(nrow(dfEvaluate) / (CVs+1))
indexCount <- 1
outcomeName <- c('cluster')
predictors <- names(dfEvaluate)[!names(dfEvaluate) %in% outcomeName]
lsErr <- c()
lsAUC <- c()
for (cv in seq(1:CVs)) {
print(paste('cv',cv))

dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + cvDivider))
dataTest <- dfEvaluate[dataTestIndex,]
dataTrain <- dfEvaluate[-dataTestIndex,]

dataTrain[,outcomeName] <- ifelse(dataTrain[,outcomeName]==1,'yes','nope')

# create caret trainControl object to control the number of cross-validations performed
objControl <- trainControl(method='cv', number=2, returnResamp='none', summaryFunction = twoClassSummary, classProbs = TRUE)

# run model
bst <- train(dataTrain[,predictors],  as.factor(dataTrain[,outcomeName]),
method='gbm',
trControl=objControl,
metric = "ROC",
tuneGrid = expand.grid(n.trees = trees, interaction.depth = depth, shrinkage = shrink)
)

predictions <- predict(object=bst, dataTest[,predictors], type='prob')
auc <- auc(ifelse(dataTest[,outcomeName]==1,1,0),predictions[[2]])
err <- rmse(ifelse(dataTest[,outcomeName]==1,1,0),predictions[[2]])

lsErr <- c(lsErr, err)
lsAUC <- c(lsAUC, auc)
gc()
}
print(paste('Mean Error:',mean(lsErr)))
print(paste('Mean AUC:',mean(lsAUC)))
}

# https://archive.ics.uci.edu/ml/datasets/Gisette
# http://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html

# word of warning, this is 20mb - slow
urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.data'
x <- getURL(urlfile, ssl.verifypeer = FALSE)
gisetteRaw <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFactors = FALSE)

urlfile <- "https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.labels"
x <- getURL(urlfile, ssl.verifypeer = FALSE)
g_labels <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFactors = FALSE)

# Remove zero and close to zero variance

nzv <- nearZeroVar(gisetteRaw, saveMetrics = TRUE)
range(nzv\$percentUnique)

# how many have no variation at all
print(length(nzv[nzv\$zeroVar==T,]))

print(paste('Column count before cutoff:',ncol(gisetteRaw)))

# how many have less than 0.1 percent variance
dim(nzv[nzv\$percentUnique > 0.1,])

# remove zero & near-zero variance from original data set
gisette_nzv <- gisetteRaw[c(rownames(nzv[nzv\$percentUnique > 0.1,])) ]
print(paste('Column count after cutoff:',ncol(gisette_nzv)))

# Run model on original data set

dfEvaluateOrig <- cbind(as.data.frame(sapply(gisette_nzv, as.numeric)),
cluster=g_labels\$V1)

Evaluate_GBM_AUC(dfEvaluateOrig, CV=5, trees=10, depth=2, shrink=1)

# Run prcomp on the data set

pmatrix <- scale(gisette_nzv)
princ <- prcomp(pmatrix)

# change nComp to try different numbers of component variables
nComp <- 20
dfComponents <- predict(princ, newdata=pmatrix)[,1:nComp]
dfEvaluatePCA <- cbind(as.data.frame(dfComponents),
cluster=g_labels\$V1)
Evaluate_GBM_AUC(dfEvaluatePCA,CV=5, trees=10, depth=2, shrink=1)

``````